menu

Results Count
Sort By: Relevance
translation missing: zh.static.catalog.format.quest

AWS云端的Big Data

科学家,开发者和其他来自各行各业地技术人员可以利用AWS来进行大数据分析,以满足不断增加地数据量,数据种类和快速访问数字信息的需求带来的挑战。AWS提供云计算服务的服务组合,可以帮助你降低成本,弹性扩展来满足业务需求,并且加快创新的步伐。在本任务中,你将学习使用大数据的基本服务。

English 简体中文
translation missing: zh.static.catalog.format.quest

Advanced Operations Using Amazon Redshift

In this Quest, you will delve deeper into the uses and capabilities of Amazon Redshift. You will use a remote SQL client to create and configure tables, and gain practice loading large data sets into Redshift. You will explore the effects of schema variations and compression. You will explore visualization of Redshift data, and connect Redshift with Amazon Machine Learning to create a predictive data model.

translation missing: zh.static.catalog.format.quest

Serverless Web Apps using Amazon DynamoDB

Serverless architectures allow you to build and run applications and services without needing to provision, manage, and scale infrastructure. This quest will show how to design, build, and deploy interactive serverless web applications, using a simple HTML/JavaScript web interface which uses Amazon API Gateway calls to send requests to AWS Lambda backends that query Amazon DynamoDB data.

translation missing: zh.static.catalog.format.lab

Analyze Big Data with Hadoop

In this lab, you will deploy a fully functional Hadoop cluster, ready to analyze log data in just a few minutes. You will start by launching an Amazon EMR cluster and then use a HiveQL script to process sample log data stored in an Amazon S3 bucket. HiveQL is a SQL-like scripting language for data warehousing and analysis. You can then use a similar setup to analyze your own log files.

translation missing: zh.static.catalog.format.lab

Advanced Amazon Redshift: Data Loading

In this lab, you will experiment with and compare different types of data loading using Amazon Redshift. You will create tables, load data using S3, remote hosts, and practice troubleshooting data loading errors. For the lab to function as written, please DO NOT change the auto assigned region.

English 日本語
translation missing: zh.static.catalog.format.lab

使用S3服务于开放数据

本实验展示如何上传文件到S3,并让文件跨越通过web浏览器来访问。你将学到如何创建亚马逊S3存储桶,配置它来提供web站点服务,使用JavaScript代码来展示这些对象。同时,你将了解到创建开放数据的最佳实践。在实验的最后,你将部署一个简单的web 站点,让数据跨越被访问,和提供数据的基本文档。

English 日本語 简体中文
translation missing: zh.static.catalog.format.lab

[:zh] 使用Amazon EMR分析Ngrams

[:zh] 本实验演示如何运行Amazon Elastic MapReduce(EMR)集群进行大数据分析,并使用Hive以类似SQL查询的方式来分析数据。你将使用Amazon EMR创建一个小的Hadoop集群,对存储在S3上的数据运行交互式的Hive查询。你将使用Hive来把数据规范化处理,创建有意义的数据表并保存在S3上,便于在集群上运行其他作业。

English 日本語 简体中文
translation missing: zh.static.catalog.format.lab

Introduction to Amazon Redshift

The lab will give you the basic understanding of Amazon Redshift data warehouse service. It will demonstrate the basic steps required to get started with Redshift: creating a cluster, loading data and performing queries against that data.

English 日本語
translation missing: zh.static.catalog.format.lab

Introduction to Amazon Kinesis Firehose

Amazon Kinesis Firehose is the easiest way to load streaming data into AWS. This hand-son lab will demonstrate how Amazon Kinesis Firehose can capture and automatically load streaming data into an Elasticsearch cluster.

translation missing: zh.static.catalog.format.lab

使用 Amazon Redshift

本实验演示了如何使用 Amazon RedShift 来创建集群、加载数据、运行查询以及监控性能。注意:在本实验中,学员需要下载免费的 SQL 客户端。

English 日本語 简体中文

Header

translation missing: zh.static.catalog.filter.format_title
expand_more
translation missing: zh.static.catalog.level.level
expand_more
translation missing: zh.static.catalog.filter.duration.title
expand_more
translation missing: zh.static.catalog.filter.price.title
expand_more
translation missing: zh.static.catalog.filter.modality.modality
expand_more
translation missing: zh.static.catalog.filter.locale.title
expand_more
home
Home
school
Catalog
menu
More
More